SASHA Ivanov

Problem solving 2
Graphs and Groups, Spectra and Symmetries
August 25, 2016

1. Let Γ be a graph and C be a cycle with possible repeated vertices in Γ. Explain that is meant for C to be triangulable.
2. Suppose that Γ satisfies the following conditions for all $2 \leq i \leq$ $\operatorname{diam}(\Gamma)$:
(a) whenever $u \in \Gamma_{i}(v)$ the subgraph included by $\Gamma_{i-1}(u) \cap \Gamma(v)$ is connected;
(b) whenever u and w are adjacent vertices in $\Gamma_{i}(v)$ the set $\Gamma_{i-1}(u) \cap$ $\Gamma_{i-1}(w) \cap \Gamma(v)$ is non-empty.

Show that every cycle in Γ is triangulable.
3 . Show that every cycle in the complement of the Johnson graph $J(n, 2)$ is triangulable whenever $n \geq 8$.
4. Show that the following cycle is triangulable in the complement of $J(7,2)$.

5. A surjective map $\phi: V(\Gamma) \rightarrow V(\Psi)$ is a k-cover of graphs if $\left|\phi^{-1}(v)\right|=k$ for every $v \in V(\Psi)$ and if image of and edge of Γ is an edge of Ψ. Construct a 3 -cover of the complement of $J(7,2)$ which is locally the Petersen graph.

